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Abstract

An analytical solution is presented for the forced convection and entropy generation of a viscoelastic fluid obeying the Phan-Thien–Tanner (PTT)
constitutive equation in a concentric annulus with relative rotation of the inner and outer cylinders. Two different types of boundary conditions are
considered: at the first case both cylinders are isothermal and kept at different temperatures and in the second case the heat flux is kept constant
at the outer cylinder and the inner one is isothermal. Analytical expressions for dimensionless temperature profile (Θ), dimensionless entropy
generation number (NS ), and the Bejan number (Be) are obtained. The effect of velocity ratio (β), the group parameter (Br/Ω), the Brinkman
number (Br), and fluid elasticity (ε We2) on the above parameters are investigated. The results show that the total entropy generation number
decreases as the fluid elasticity increases. The results also show that entropy generation number increases with increasing Brinkman number.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Tangential flows of non-Newtonian fluids within annuli have
wide range of engineering applications such as in the journal
bearings, commercial viscometers, swirl nozzles, chemical and
mechanical mixing equipments and electrical motors (see e.g.
Maron and Cohen [1]).

Forced convective heat transfer of Newtonian fluids in an-
nular space has been investigated extensively in the litera-
ture. A comprehensive review of paper is given by Childs and
Long [2].

An extensive bibliography of papers on the flow of non-
Newtonian fluids through annular channels is given in a recent
paper by Escudier et al. [3]. Convective heat transfer of non-
Newtonian fluids inside the annuli were considered in several
works, for example Khellaf and Lauriat [4] analyzed the con-
vective heat transfer characteristics for the flow of a Carreau
fluid between rotating concentric vertical cylinders. Naimi et
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al. [5] performed a flow visualization study of the develop-
ment and structure of Taylor–Couette vortices for the case of
a power-law fluid (Carbopol 940) with and without axial flow
in the forced convection regime. From their experimental study,
they derived heat transfer correlations for various flow regimes.
Laminar forced convection heat transfer of purely viscous, non-
Newtonian fluid flow in both concentric and eccentric annuli
was numerically investigated by Manglik and Fang [6]. Capo-
bianchi and Irvine [7] have considered heat transfer to modified
power-law liquids in concentric annuli.

Although the forgoing research works have covered a wide
range of problems involving the flow and heat transfer in con-
centric annuli they have been restricted, from thermodynamic
point of view, to only the first law (thermodynamic) analysis.
The contemporary trend in the field of heat transfer and thermal
design is the second law (of thermodynamics) analysis and its
design-related concept of entropy generation minimization (Be-
jan [8]). Entropy generation is associated with thermodynamic
irreversibility, which is common in all types of heat transfer
processes. The ultimate motive behind the infusion of entropy
generation analysis in heat transfer and thermal design is eco-
nomics, and it is clear that minimizing irreversibility in the
thermal systems results in decreasing the operating cost. Since
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Nomenclature

Be Bejan number, = NR/NS

Br Brinkman number, = Ec × Pr
C constant (see Eq. (39))
Cn integration constants, n = 2,3,4
CP specific heat at constant pressure . . . . kJ kg−1 K−1

E constant (see Eq. (39))
Ec Eckert number, = (riωi)

2/(CP �T )

F constant (see Eq. (39))
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

NF entropy generation number; fluid friction contribu-
tion

NR entropy generation number; heat transfer contribu-
tion

NS entropy generation number; total
p̃ constant (see Eq. (12))
Pr Prandtl number, = ηCP /k

q̃ constant (see Eq. (13))
q constant heat flux at wall . . . . . . . . . . . . . . . . W m−2

r radial distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R dimensionless radial distance, = r/ri
SG entropy generation rate . . . . . . . . . . . . . W m−3 K−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
u tangential velocity . . . . . . . . . . . . . . . . . . . . . . . m s−1

U dimensionless tangential velocity, = u/uc

uc characteristic velocity, = riωi

We Weissenberg number, = λuc/δ

Z stress coefficient function (see Eq. (7))

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

β velocity ratio, = (roωo)/(riωi)

δ annular gap, ro − ri . . . . . . . . . . . . . . . . . . . . . . . . . m
ε elongational parameter of the PTT model
η viscosity coefficient of the PTT model . . . . . . . Pa s
γ̇ shear rate tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

λ relaxation time in PTT model . . . . . . . . . . . . . . . . . s
ω angular velocity . . . . . . . . . . . . . . . . . . . . . . . . rad s−1

Ω dimensionless temperature difference, = �T/Ti

Φ viscous dissipation function (see Eq. (23))
Π radius ratio, = ro/ri
τ stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
θ tangential coordinate
Θ dimensionless temperature, = (T − Ti)/�T

∀ volume of the annular gap. . . . . . . . . . . . . . . . . . . m3

Superscripts

T transpose of tensor
∗ refers to dimensionless quantities

Subscripts

av refers to average value
i refers to inner cylinder
o refers to outer cylinder
q refers to isoflux boundary condition
T refers to isothermal boundary condition
w refers to wall value
the lost available work is proportional to the entropy generation,
thus decreasing entropy generation decreases the lost available
work. Different sources are responsible for the generation of
entropy (Bejan [8]), for example, heat transfer across a finite
temperature difference, characteristics of convective heat trans-
fer, viscous effects, etc.

The concepts of entropy generation number and irreversibil-
ity distribution ratio were introduced by Bejan [9], a consid-
erable number of research studies were carried out to examine
entropy generation in the flow systems with different geometric
configurations, flow situations, and thermal boundary condi-
tions. Bejan [9] obtained the entropy generation in fundamental
convective heat transfer problems and provided some examples.
Nag and Kumar [10] presented the second law optimization
techniques for convective heat transfer through duct at constant
heat flux boundary condition. Further extension was done by
Sahin [11] who introduced the second law analysis of viscous
fluid in a circular duct at isothermal boundary condition. In a
more recent paper, Sahin [12] presented the effect of variable
viscosity on entropy generation rate for the constant heat flux
boundary condition for circular ducts.

For a concentric cylindrical annulus, Yilbas [13] presented
an entropy analysis with a rotating outer cylinder and differen-
tially heated isothermal boundary condition. Yilbas assumed a
linear velocity profile and neglected the contribution of fluid
friction irreversibility to entropy generation. Analysis of en-
tropy generation inside concentric cylindrical annuli with rela-
tive rotation was investigated by Mahmud and Fraser [14]. They
showed that irreversibility increased with increasing Brinkman
number and group parameters, except when both cylinders ro-
tate in the same direction with the same angular speed. Haddad
et al. [15] focused on entropy generation due to the laminar
forced convection in the entrance region of a concentric cylin-
drical annulus. They found that entropy generation is inversely
proportional to both Reynolds number and the dimensionless
entrance temperature.

Second law analysis of channel and pipe flows for non-
Newtonian power-law fluids was carried out by Mahmud and
Fraser [16]. Pakdemirli and Yilbas [17] presented the entropy
generation for pipe flow of a third grade fluid with Vogel model
viscosity.

Although many studies on the energy and exergy analysis
of thermal systems and their applications have recently been
undertaken by some researchers, to the best knowledge of the
authors, entropy generation analysis for viscoelastic fluid has
not yet been addressed in the literature and the present study is
considered as a first attempt in this context.
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The Phan-Thien–Tanner (PTT) model is a fairly simple
quasi-linear viscoelastic model constitutive equation which was
derived using network theory by Phan-Thien and Tanner [18]
and Phan-Thien [19]. This model incorporates not only shear-
thinning shear viscosity, normal-stress differences but also an
elongational parameter ε and so reproduces many of the charac-
teristics of the rheology of polymer solutions and other liquids.
The elongational parameter imposes an upper limit on the elon-
gational viscosity which is inversely proportional to ε. When
ε goes to zero the PTT constitutive equation reduces to the
Johnson–Segalman model but without the presence of the sol-
vent viscosity, while the simplified form of the PTT model is
equivalent to the upper convected Maxwell model. The PTT
model is being employed increasingly to predict the flow and
heat transfer of viscoelastic fluids: Recent papers include those
of Oliveira and Pinho [20], Cruz and Pinho [21] and Mirza-
zadeh et al. [22].

The objective of present paper is to determine heat transfer
characteristics and the resulting entropy generation in purely
tangential flow of nonlinear viscoelastic fluid obeying sim-
plified form of Phan-Thien–Tanner (SPTT) constitutive equa-
tion between concentric rotating cylinders where the inner and
the outer cylinders are rotating with different angular veloci-
ties. The governing equations are simplified and solved using
both isothermal and isoflux boundary conditions. Analytical
expressions for dimensionless entropy generation number, ir-
reversibility distribution ratio, and the Bejan number are ob-
tained.

2. Mathematical formulation

Fig. 1 presents a schematic diagram of the fluid flow and heat
transfer domains. The ratio of outer cylinder radius (ro) to inner
cylinder radius (ri ) is defined as Π , so that the radial gap width,
δ is equal to (Π − 1)ri . The angular velocities of the inner and
outer cylinders are denoted by ωi and ωo, respectively.

The problem under consideration is steady, laminar, and
purely tangential, therefore the radial component of velocity
vector is neglected. Also the fluid properties are assumed to
be independent of temperature. Under these conditions, the

Fig. 1. Schematic view of concentric rotating annuli.
governing energy equation describing this problem, with the
assumption of appreciable viscous dissipation and negligible
axial flow, can be represented by the following equation:

k

r

d

dr

(
r

dT

dr

)
+ τrθ r

d

dr

(
uθ

r

)
= 0 (1)

In this study, two types of boundary conditions are consid-
ered: in the first case, both cylinders are isothermal and kept at
different temperatures and in the second case, the inner cylinder
is subjected to a constant temperature while the outer cylinder
is kept at constant heat flux. The boundary conditions are:

r = ri ⇒ uθ = riωi, T = Ti (2)

r = ro ⇒ uθ = roωo, T = To or
∂T

∂r
= q

k
(3)

Let us introduce a characteristic velocity scale uc = riωi to-
gether with the Brinkman number (Br = Ec × Pr, where Ec is
the Eckert number and Pr is the Prandtl number) and a charac-
teristic shear stress (ηuc/δ). Following the introduction of these
parameters, Eq. (1) can be written in non-dimensional form as:

1

R

d

dR

(
R

dΘ

dR

)
+ Br

Π − 1
τ ∗
rθR

d

dR

(
U

R

)
= 0 (4)

where R = r/ri , and Θ is the dimensionless temperature and
is defined as (T − Ti)/�T (where �T = To − Ti is the refer-
ence temperature difference), τ ∗

rθ is dimensionless shear stress
and is defined as τrθ/(ηuc/δ), and U is dimensionless velocity
(uθ/uc).

3. Analytical solution

3.1. Fluid constitutive equation

In this investigation the simplified Phan-Thien–Tanner
(SPTT) constitutive equation with linearized stress coefficient
was employed. This rheological equation (SPTT) can be de-
scribed by the following expression (Phan-Thien and Tanner
[18] and Phan-Thien [19]):

Z(tr τ)τ + λτ(1) = ηγ̇ (5)

where η is the viscosity coefficient of the model, λ is the relax-
ation time, tr τ is the trace of the stress tensor and τ(1) is the
upper convected time derivative of the stress tensor:

τ(1) = Dτ

Dt
− {

(∇V )T .τ + τ.(∇V )
}

(6)

The stress coefficient Z has an exponential form but can be
linearized when the deformation rate of fluid element is small;
a condition which corresponds to what Tanner [23] classifies as
weak flow:

Z(tr τ) = 1 + ελ

η
tr τ (7)

where ε is the elongational parameter of the model.
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3.2. Hydrodynamic solution

The hydrodynamic solution for the tangential flow of SPTT
was derived by Mirzazadeh et al. [22] who arrived at the fol-
lowing equations for dimensionless velocity profile, shear rate,
and shear stress:

U

R
= − τ ∗

wi

(Π − 1)R2

[
1

2
+ ε We2 τ ∗2

wi

3R4

]
+ C2 (8)

γ̇ ∗ = (Π − 1)R
d

dR

(
U

R

)
= τ ∗

rθ

(
1 + 2ε We2 τ ∗2

rθ

)
(9)

τ ∗
rθ = τ ∗

wi

R2
(10)

where We is Weissenberg number, a measure of the level of
elasticity in the fluid (defined as, We = λuc/δ) and τ ∗

wi is the
dimensionless wall shear stress on the inner cylinder and was
shown to be given by:

τ ∗
wi = 1

6
3

√
−108q̃ + 12

√
12p̃3 + 81q̃2

− 2p̃

3
√

−108q̃ + 12
√

12p̃3 + 81q̃2
(11)

The constants p̃ and q̃ in Eq. (11) are given by:

p̃ = 3Π4(Π2 − 1)

2ε We2(Π6 − 1)
(12)

q̃ = 3Π5(Π − 1)(Π − β)

ε We2(Π6 − 1)
(13)

where

β = roωo

riωi

(14)

Once τ ∗
wi is known, determination of constant C2 in Eq. (8)

is straightforward: C2 is obtained from Eq. (8) and by applying
one of the boundary conditions (Eq. (2) or Eq. (3)).

For the limiting case (ε We2 → 0) Eq. (8) reduces to the
well-known solution for a Newtonian fluid (see e.g. Bird et
al. [24]; Mahmud and Fraser [14])

U

R
= − τ ∗

wi

2(Π − 1)R2
+ C2 (15)

where

τ ∗
wi = −2Π(Π − β)

Π + 1
and C2 = βΠ − 1

Π2 − 1
(16)

3.3. First law analysis

Substitution Eqs. (9) and (10) into Eq. (4) and integrating,
the dimensionless temperature profile can be obtained:

Θ = − Br τ ∗2
wi

4R2(Π − 1)2
− ε We2 Br τ ∗4

wi

18R6(Π − 1)2
+ C3 lnR + C4 (17)

In the above equation, C3 and C4 are the constants of inte-
gration which can be obtained by introduction of boundary con-
ditions into temperature profile. For the isothermal boundary
condition, Θ = 0 at R = 1 and Θ = 1 at R = Π . Using these
dimensionless boundary conditions, non-dimensional tempera-
ture profile for the isothermal boundary condition becomes

ΘT = Br τ ∗2
wi

36R6(Π − 1)2

[
9R4(R2 − 1

) + 2ε We2 τ ∗2
wi

(
R6 − 1

)]

+
[

1 + Br τ ∗2
wi

36Π6(Π − 1)2

(
9Π4(1 − Π2)

+ 2ε We2 τ ∗2
wi

(
1 − Π6))] lnR

lnΠ
(18)

For the limiting case of Newtonian fluid (as ε We2 goes to
zero) the previous equation reduces to the following expression
for temperature profile:

ΘT = Br

(
Π(Π − β)

Π2 − 1

)2[
1 − 1

R2
+

(
1

Π2
− 1

)
lnR

lnΠ

]
+ lnR

lnΠ

(19)

As it can be seen from the above equation, our result is not
in agreement with the previous work of Mahmud and Fraser
[14] (compare Eq. (9) in their work with Eq. (19) in our). We
believe that, the reason of this discrepancy is related to the mis-
take occurred at the early stages of their analysis which had a
’knock-on’ effect throughout their paper.

For the isoflux boundary condition, a constant heat flux q is
applied to the outer cylinder, but the temperature at the inner
cylinder is kept constant as isothermal case. For this particular
case, Θ = 0 at R = 1 and ∂Θ/∂R = 1 at R = Π . Using these
dimensionless boundary conditions, non-dimensional tempera-
ture distribution for the isoflux boundary condition becomes

Θq = Br τ ∗2
wi

36R6(Π − 1)2

[
9R4(R2 − 1

) + 2ε We2 τ ∗2
wi

(
R6 − 1

)]

+
[

1 − Br τ ∗2
wi

6Π7(Π − 1)2

(
3Π4 + 2ε We2 τ ∗2

wi

)]
Π lnR

(20)

For the limiting case of Newtonian fluid (as ε We2 goes to
zero) the previous equation reduces to the following expression
for temperature profile:

Θq = Br

(
Π(Π − β)

Π2 − 1

)2(
1 − 1

R2
− 2 lnR

Π2

)
+ Π lnR (21)

As it can be seen from the above equation, our result is ba-
sically similar in shape to that of Mahmud and Fraser [14] (see
Eq. (10) in their work), but again there is a small difference; the

constant Γ3 in their work ( (Π−β)2

Π2−1
, see paragraph below Eq. (8)

in [14]) is not equal to (
Π(Π−β)

Π2−1
)2 of this work, as it can be seen

on the right-hand side of Eq. (21).

3.4. Second law analysis

The local volumetric rate of entropy generation, SG

(W m−3 K−1), in cylindrical coordinates is given in the follow-
ing equation (Bejan [25])

SG = κ

T 2
(∇T )2 + Φ

T
(22)
i i
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Function Φ appearing in Eq. (22) is the viscous dissipation
function and can be obtained from the following equation:

Φ = τrθ r
d

dr

(
uθ

r

)
(23)

Substitution Eq. (23) into Eq. (22) leads to

SG = k

T 2
i

(
dT

dr

)2

+ τrθ

Ti

r
d

dr

(
uθ

r

)
(24)

Eq. (24) clearly shows contributions of the two sources of
entropy generations. The first term on the right-hand side of
Eq. (24) is the entropy generation due to heat transfer across
a finite temperature difference, whereas the second term is the
local entropy generation due to viscous dissipation. It is also ap-
propriate to define dimensionless group for entropy generation
rate, as the entropy generation number (NS ). This new group is
defined by dividing the volumetric entropy generation rate (SG)
to a characteristic entropy generation rate (SG,C ). For two cases
of isoflux and isothermal boundary conditions the characteristic
entropy generation rates are as below (Bejan [8,9]):

SG,C =
[

q2

κT 2
i

]
Isoflux

, SG,C =
[
κ(�T )2

r2
i T 2

i

]
Isothermal

(25)

Using the above characteristic entropy generation rates and
with respect to definition of entropy generation number, we ar-
rive at the following equation for NS

NS =
(

dΘ

dR

)2

+ Br τ ∗
rθ

Ω(Π − 1)
R

d

dR

(
U

R

)
= NR + NF (26)

where Ω is the dimensionless temperature difference (�T/Ti ).
The first term on the right-hand side of Eq. (26), is entropy
generation due to heat transfer in radial direction (NR) and the
second term is the fluid friction contribution to entropy gener-
ation (NF ). Substitution Eqs. (9) and (18) into Eq. (26), gives
the entropy generation number (NST ) for the case of isothermal
boundary condition

NST =
{

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 + Br τ ∗2
wi

36(Π − 1)2Π6

(
9Π4(1 − Π2)

+ 2ε We2 τ ∗2
wi

(
1 − Π6))]/

R lnΠ

}2

+ Br

Ω

τ ∗2
wi

(Π − 1)2R8

(
R4 + 2ε We2 τ ∗2

wi

)
(27)

Substitution Eqs. (9) and (19) into Eq. (26) gives the entropy
generation number (NSq ) for the case of isoflux boundary con-
dition

NSq =
{

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 − Br τ ∗2
wi

6(Π − 1)2Π7

(
3Π4 + 2ε We2 τ ∗2

wi

)]Π

R

}2

+ Br τ ∗2
wi

2 8

(
R4 + 2ε We2 τ ∗2

wi

)
(28)
Ω(Π − 1) R
Br/Ω in Eqs. (27) and (28) determines the relative impor-
tance between viscous effects and fluid conduction effects. Be-
cause flow and thermal fields are assumed independent, it can
be easily seen from Eqs. (27) and (28) that, the fluid friction
contribution to the entropy generation are the same, for both
isothermal and isoflux boundary conditions.

For the limiting case of Newtonian fluid (as ε We2 goes to
zero) Eqs. (27) and (28) reduce to the following expressions for
entropy generation number:

NST =
{

Br

(
Π(Π − β)

Π2 − 1

)2( 2

R3
+ 1 − Π2

Π2

1

R lnΠ

)

+ 1

R lnΠ

}2

+ 4
Br

Ω

(
Π(Π − β)

Π2 − 1

)2 1

R4
(29)

NSq =
{

2

(
Π(Π − β)

Π2 − 1

)2
Br

R

(
1

R2
− 1

Π2

)
+ Π

R

}2

+ 4
Br

Ω

(
Π(Π − β)

Π2 − 1

)2 1

R4
(30)

which again are not in agreement to those of Mahmud and
Fraser [14] (compare Eqs. (14) and (15) of their work with
Eqs. (29) and (30)).

3.5. Fluid friction versus heat transfer irreversibility

An important parameter in entropy generation analysis is the
Bejan number, Be, which is the ratio of entropy generation due
to heat transfer to the total entropy generation. The Bejan num-
ber defined by Paoletti et al. [26] is as below

Be = NR

NR + NF

(31)

The Bejan number varies between 0 and 1. Accordingly,
Be = 1 corresponds to the condition at which the entropy gen-
eration is dominated by heat transfer, while Be = 0 corresponds
to the condition at which the fluid friction dominates the en-
tropy generation. The Bejan number for the case of isothermal
boundary condition can be obtained by using Eqs. (27) and (31)

BeT =
{

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 + Br τ ∗2
wi

36(Π − 1)2Π6

(
9Π4(1 − Π2)

+ 2ε We2 τ ∗2
wi

(
1 − Π6))]/

R lnΠ

}2

×
({

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 + Br τ ∗2
wi

36(Π − 1)2Π6

(
9Π4(1 − Π2)

+ 2ε We2 τ ∗2
wi

(
1 − Π6))]/

R lnΠ

}2

+ Br τ ∗2
wi

2 8

(
R4 + 2ε We2 τ ∗2

wi

))−1

(32)

Ω(Π − 1) R
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By combination of Eqs. (28) and (31) we arrive at the follow-
ing expression for Bejan number for isoflux boundary condition

Beq =
{

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 − Br τ ∗2
wi

6(Π − 1)2Π7

(
3Π4 + 2ε We2 τ ∗2

wi

)]Π

R

}2

×
({

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2

wi

)

+
[

1 − Br τ ∗2
wi

6(Π − 1)2Π7

(
3Π4 + 2ε We2 τ ∗2

wi

)]Π

R

}2

+ Br τ ∗2
wi

Ω(Π − 1)2R8

(
R4 + 2ε We2 τ ∗2

wi

))−1

(33)

For the limiting case of Newtonian fluid (as ε We2 goes to
zero) we arrive at the following expressions for Bejan number:

BeT =
{

Br

(
Π(Π − β)

Π2 − 1

)2( 2

R3
+ 1 − Π2

Π2

1

R lnΠ

)

+ 1

R lnΠ

}2

×
({

Br

(
Π(Π − β)

Π2 − 1

)2( 2

R3
+ 1 − Π2

Π2

1

R lnΠ

)

+ 1

R lnΠ

}2

+ 4
Br

Ω

(
Π(Π − β)

Π2 − 1

)2 1

R4

)−1

(34)

Beq =
{

2

(
Π(Π − β)

Π2 − 1

)2 Br

R

(
1

R2
− 1

Π2

)
+ Π

R

}2

×
({

2

(
Π(Π − β)

Π2 − 1

)2 Br

R

(
1

R2
− 1

Π2

)
+ Π

R

}2

+ 4
Br

Ω

(
Π(Π − β)

Π2 − 1

)2 1

R4

)−1

(35)

which again are not in agreement to those of Mahmud and
Fraser [14] (compare Eqs. (17) and (18) of their work with
Eqs. (34) and (35)).

3.6. Inner wall heat flux

In order to complete the solution, consider another thermal
boundary condition in which, the inner cylinder is subjected
to constant wall heat flux while the outer cylinder is kept at
constant temperature

r = ri ⇒ uθ = riωi, −∂T

∂r
= q

k
(2a)

r = ro ⇒ uθ = roωo, T = To (3a)

If we adopt a similar procedure to that used for the previous
boundary conditions (Eqs. (2) and (3)), we arrive at the fol-
lowing expressions for temperature profile, entropy generation
number, and Bejan number

Θq = Br τ ∗2
wi

36R6Π6(Π − 1)2

[
9Π4R4(R2 − Π2)

+ 2ε We2 τ ∗2
wi

(
R6 − Π6)]

+
[
−1 − Br τ ∗2

wi

6(Π − 1)2

(
3 + 2ε We2 τ ∗2

wi

)]
ln

R

Π
(20a)

NSq =
{

Br τ ∗2
wi

6(Π − 1)2R7

(
3R4 + 2ε We2 τ ∗2
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)

+
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6(Π − 1)2

(
3 + 2ε We2 τ ∗2

wi

)] 1

R

}2

+ Br τ ∗2
wi

Ω(Π − 1)2R8

(
R4 + 2ε We2 τ ∗2

wi

)
(28a)

Beq =
{

Br τ ∗2
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wi

6(Π − 1)2

(
3 + 2ε We2 τ ∗2

wi

)] 1
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(33a)

In the above equations Θ is the dimensionless temperature and
is defined as (T − To)/�T .

4. Results and discussions

4.1. Flow and thermal fields

The flow field of PTT viscoelastic was discussed in details
by Mirzazadeh et al. [22]. Therefore in this section we only
focus on the heat transfer behavior of PTT fluid. Temperature
profiles are presented in Fig. 2 for different values of Brinkman
number ranges 0–6, in the case of isothermal boundary con-
dition, and when the inner cylinder is rotating and the outer
cylinder is at rest (i.e. β = 0). As it is apparent from this figure,
the temperature profile exhibits a maximum value within the an-
nular gap for Br > 2. This is because by increasing Brinkman
number, the magnitude of viscous dissipation term increases in
Eq. (4). The location of maximum temperature is also impor-
tant, because at this position the entropy generation due to heat
transfer is zero (i.e. Be = 0).

Fig. 3 shows the effect of fluid elasticity (ε We2, ranges
0–100) on temperature profile for the case of inner cylinder ro-
tation. As it can be seen from this figure, by increasing the fluid
elasticity the value of maximum temperature decreases inside
the annular space and for high Weissenberg number this max-
imum disappears. This behavior of fluid results from the shear
thinning effect of PTT fluid, where the viscosity function and
shear stress of fluid decreases with increasing fluid elasticity.
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Fig. 2. Effect of Brinkman number on the temperature profile for isothermal
boundary condition for Π = 2, β = 0, ε We2 = 0.1.

Fig. 3. Effect of fluid elasticity (ε We2) on the temperature profile for isothermal
boundary condition for Π = 2, β = 0, Br = 6.

A discussion of the viscosity function and the shear-thinning
behaviour of a PTT fluid was given by Keunings and Crochet
[27] and is discussed in greater detail by Pinho and Oliveira [28]
(see e.g. Fig. 4 in their work). A similar remark can be made for
the case of constant heat flux boundary condition (as is shown
in Fig. 4), although the temperature profiles are not similar in
shape to the isothermal case.

4.2. Local entropy generation

The influence of fluid elasticity (ε We2, ranges 0–100) on di-
mensionless entropy generation numbers (NST and NSq ) are
Fig. 4. Effect of fluid elasticity (ε We2) on the temperature profile for isoflux
boundary condition for Π = 2, β = 0, Br = 4.

Fig. 5. Effect of fluid elasticity (ε We2) on the isothermal entropy generation
profiles for Π = 2, Br = 1, Br/Ω = 1, β = 0.

shown in Figs. 5 and 6. The decrease in NST and NSq with
increasing fluid elasticity is again attributable to the shear-
thinning behaviour of the PTT fluid. it can be seen from these
figures, as ε We2 approaches zero the values of the NST and
NSq are not in agreement with those for a Newtonian fluid (see
Figs. 4 and 10 in Mahmud and Fraser [14] paper for Π = 2,
Br = 1, β (λ in their work) = 0, Br/Ω = 1), which is again re-
lated to the mistake made in the derivation of the equations of
their work.

Bejan number (Be) is another important parameter which
is usually used in analyzing entropy generation problems, and
based on definition (Eq. (31)), the value of Bejan number in-
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Fig. 6. Effect of fluid elasticity (ε We2) on the isoflux entropy generation pro-
files for Π = 2, Br = 1, Br/Ω = 1, β = 0.

Fig. 7. Isothermal Bejan number profiles at different group parameters (Br/Ω)
for Π = 2, β = 0, Br = 4, ε We2 = 0.1.

dicates whether the entropy generation is dominated by heat
transfer or fluid friction. Fig. 7 represents the effect of group pa-
rameter (Br/Ω , ranges 0–1) on Bejan number (BeT ) for Π = 2,
Br = 4, β = 0, ε We2 = 0.1. As it is shown in this figure for
Br/Ω = 0 the Bejan number is equal to 1 which means there
is no fluid friction contribution to entropy generation. However,
as Br/Ω increases the Bejan number decreases which means
the fluid friction contribution to entropy generation increases.
Another important finding from this figure is that for all values
of the group parameters (Br/Ω > 0), the Bejan number profile
exhibits a minimum value within the annular gap which is due
to the occurrence of the maximum in the temperature profile.
The radial location of minimum Bejan number is independent
Fig. 8. Effect of fluid elasticity (ε We2) on the isothermal Bejan number profiles
for Π = 2, Br = 6, Br/Ω = 1, β = 0.

of the values of group parameters and this location is the same
as the radial location of maximum temperature (Rmin ≈ 1.58).
The value of minimum Bejan number for all values of group
parameters is zero. This is because the occurrence of maximum
in temperature profile implies the zero temperature gradient
(∂Θ/∂R = 0) and consequently Bejan number becomes zero
with respect to its definition (see Eqs. (31) and (26)). The zero
value of Bejan number indicates that, there is no heat transfer
contribution to the entropy generation or in other words, the en-
tropy generation is dominated only by fluid friction.

The effect of fluid elasticity (ε We2, ranges 0–10) on the ra-
dial distribution of Bejan number is shown in Fig. 8. As it can
be seen from this figure, for lower values of fluid elasticity
(ε We2 � 1) the Bejan number falls rapidly along the radial di-
rection and touches the minimum value (=0) and then increases
toward the outer cylinder. The radial location of minimum Be-
jan number shifts toward the outer cylinder and its value is same
as the radial location of maximum point in the temperature pro-
file (see Fig. 3). For higher values of fluid elasticity (ε We2 > 1)
the Bejan number profile doesn’t show any minimum within the
annular gap, which is due to the absence of maximum point in
the temperature profile (see e.g. Fig. 3).

4.3. Global entropy generation

The dimensionless volumetric average entropy generation
rate ([NS]av) can be evaluated as below:

[NS]av = 1

∀
∫
∀

NS d∀ = 1

∀
∫
∀

NSr dθ dr dz (36)

For the case of isothermal boundary condition, the average
entropy generation rate ([NST ]av) can be obtained by substitu-
tion Eq. (27) into Eq. (36)
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[NST ]av = 2

Π2 − 1

(
C2 LnΠ +

6∑
n=0

An

Π2n

)
(37)

where

Ao = 1

12

(
B2 + 3A2 + 6E + 2F + 12AC + 4BC + 3AB

)

A1 = −2AC + E

2
, A2 = −A2

4
, A3 = −2BC + F

6

A4 = −AB

4
, A5 = 0, A6 = −B2

12
(38)

constants A, B , C, E, and F are defined as below:

A = Br τ ∗2
wi

2(Π − 1)2
, B = Br τ ∗4

wi ε We2

3(Π − 1)2

C =
[

1 + Br τ ∗2
wi

36(Π − 1)2Π6

(
9Π4(1 − Π2)

+ 2ε We2τ ∗2
wi

(
1 − Π6))]/

lnΠ

E = Br

Ω

τ ∗2
wi

(Π − 1)2
, F = 2

Br

Ω

τ ∗4
wi ε We2

(Π − 1)2
(39)

As it can be seen from the above equations, the average
entropy generation rate ([NST ]av) is a function of geometric
parameter Π , velocity ratio β , fluid elasticity ε We2, Brinkman
number Br, and group parameter Br/Ω . Fig. 9 shows the ef-
fect of group parameter (Br/Ω , ranges 0–4) on average entropy
generation rate ([NST ]av) for Π = 2, ε We2 = 0.1, and Br = 1.
As it can be seen from this figure, average entropy generation
rate ([NST ]av) increases by increasing group parameter (Br/Ω).
[NST ]av profile shows a minimum at β = 2, where the magni-
tude of this minimum ([NST ]av,min ≈ 0.9618) is same for all
values of group parameters. An important finding from Fig. 9 is
that, the location of minimum average entropy generation rate

Fig. 9. Average entropy generation profiles at different group parameters
(Br/Ω) for isothermal boundary condition for Π = 2, Br = 1, ε We2 = 0.1.
and also the magnitude of this point ([NST ]av,min) are indepen-
dent of the values of Brinkman number and group parameter. In
both of these figures, the location of minimum average entropy
generation rate happen at β = Π = 2 and therefore this velocity
ratio leads to a condition at which the angular velocity of inner
cylinder (ωi ) is same as the angular velocity of outer cylinder
(ωo) (i.e. there is no relative angular motion between cylinders).
At this condition the shear stress between fluid layers will be
zero (τrθ = 0 or τ ∗

wi = 0) and hence the fluid contribution to
entropy generation will be zero (see Eqs. (26) and (27)). A sim-
ilar result was obtained previously by Mahmud and Fraser [14]
for the annular flow of Newtonian fluid: they concluded that
β = Π is the location of minimum average entropy genera-
tion rate and also this location is independent of the values of
Brinkman number and group parameter. Substitution τ ∗

wi = 0
in Eqs. (39), (38), and (37) results in the following equation for
[NST ]av,min:

[NST ]av,min = 2

(Π2 − 1)LnΠ
(40)

Eq. (40) indicates that the value of [NST ]av,min is only a
function of Π and is independent of Br, Br/Ω , and ε We2.
A similar conclusion can be reached for the case of isoflux
boundary condition. In other words the average entropy gen-
eration rate again shows a minimum at β = Π . Performing a
similar procedure to that of isothermal boundary condition re-
sults in the following equation for minimum average entropy
generation rate ([NSq ]av,min) in the case of isoflux boundary
condition

[NSq ]av,min = 2Π2 LnΠ

Π2 − 1
(41)

The minimum value of average entropy generation rate is
only a function of geometric parameter (Π ). Therefore, the ef-
fect of this parameter (Π , ranges 0–5) on the minimum value
of average entropy generation rate for both cases of isothermal
and isoflux boundary conditions are shown in Fig. 10. As it
can be seen from this figure at Π = 1.763 the value of min-
imum entropy generation ([NS]av,min = 1.672) are equal for
both boundary conditions.

The influence of fluid elasticity (ε We2, ranges 0–10) on the
average entropy generation rate ([NST ]av) is shown in Fig. 11.
As it can be seen, by increasing fluid elasticity, average entropy
generation rate ([NST ]av) decreases. This is again related to the
shear thinning behavior of PTT viscoelastic fluids, where the
magnitudes of viscosity, shear stress, and temperature gradients
decrease by increasing fluid elasticity, and consequently results
in a decrease in the magnitude of average entropy generation
rate. An important finding from this figure is that, in comparison
with Newtonian fluids, more than 40% decrease in the magni-
tude of average entropy generation rate can be achieved when
ε We2 approaches 1 (for Π = 2).

4.4. Wall cooling condition

According to the definition of wall heat flux adopted in this
work (see Eq. (3)), a positive value of wall heat flux (q > 0)
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Fig. 10. Minimum average entropy generation profiles for isothermal and
isoflux boundary conditions.

Fig. 11. Average entropy generation rate vs fluid elasticity (ε We2) for isother-
mal boundary condition for Π = 2, Br = 1, Br/Ω = 1, β = 0.

implies that heat is being supplied across the wall into the fluid
and definition of Brinkman number requires that Br > 0, while,
a negative value of wall heat flux (q < 0) implies that heat is
being removed from the outer wall and consequently requires
that Br < 0. Even though, the present solution is valid for both
cases of wall heating and wall cooling but the trend of results
are different. For example, the influence of Brinkman number
(Br, ranges from −6 to 4) on the average entropy generation
rate ([NSq ]av) is shown in Fig. 12. As it can be seen from this
figure for low absolute values of Br, a negative wall heat flux
overcomes the effect of viscous dissipation and then results in a
decrease in the average entropy generation rate; however, if Br
exceeds a certain limiting value, the heat generated internally
Fig. 12. Effect of Brinkman number (wall cooling and wall heating) on average
entropy generation rate for different values of fluid elasticity (ε We2) for Π = 2,
Br/Ω = 4, β = 0.

by viscous processes will overcome the effect of wall cooling
and therefore the average entropy generation rate increases. An-
other important finding from this figure is that, increasing the
magnitude of fluid elasticity, increases the range of Brinkman
number over which the effect of wall cooling overcomes the ef-
fect of viscous dissipation. This is because by increasing the
fluid elasticity the heat generated internally by viscous dissipa-
tion decreases due to the shear thinning behavior of the fluid.

5. Conclusions

In this study, forced convection heat transfer and entropy
generation analysis were investigated for purely tangential flow
of nonlinear viscoelastic fluid obeying the simplified form of
Phan-Thien–Tanner (SPTT) constitutive equation between con-
centric annulus where the inner and outer cylinders are rotating
with different angular velocities. Two different types of bound-
ary conditions are examined: at the first case both cylinders are
isothermal and kept at different temperatures and in the sec-
ond case the heat flux is kept constant at the outer cylinder and
the inner is isothermal. Analytical expressions for temperature
profile, entropy generation number, and the Bejan number are
derived. The effect of velocity ratio (β), the group parameter
(Br/Ω), the Brinkman number (Br), and fluid elasticity (ε We2)
on the above parameters were investigated. The conclusions of
the present study can be summarized as below:

1. For the case of isothermal boundary condition and for
higher values of Brinkman number, the temperature pro-
file exhibits a maximum within the annular gap, where the
magnitude of this maximum decreases by increasing the
fluid elasticity which is due to the shear thinning behavior
of PTT fluid.
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2. The entropy generation number increases by increasing
group parameter (Br/Ω).

3. The entropy generation number for both cases of isother-
mal and isoflux boundary conditions decreases with in-
creasing fluid elasticity which is again attributable to the
shear-thinning behaviour of the PTT fluid.

4. Contribution of the fluid friction to entropy generation in-
creases (i.e. Bejan number decreases) by increasing Br/Ω .

5. All Bejan number profiles show a minimum inside the an-
nular gap until the temperature profiles exhibit a maximum
temperature. The radial location of minimum Bejan num-
ber is exactly the same as the radial location of maximum
temperature. The magnitude of minimum Bejan number is
zero (Bemin = 0).

6. The maximum value of Bejan number (i.e. maximum heat
transfer irreversibility) occurs at the inner cylinder where
the velocity and temperature gradients are maximum.

7. Although the average entropy generation rate ([NST ]av) is
a function of geometric parameter (Π ), group parameter
(Br/Ω), Brinkman number (Br), velocity ratio (β), and
fluid elasticity (ε We2), However, the location of minimum
average entropy generation rate is only a function of geo-
metric parameter (Π ) and always this minimum occurs at
β = Π (condition at which the angular velocity of inner
and outer cylinders are equal, i.e. there is no relative rota-
tion).

8. Average entropy generation rate ([NST ]av) increases as
group parameter (Br/Ω) and Brinkman number increase.

9. Finally, the average entropy generation rate ([NST ]av) de-
creases by increasing fluid elasticity (ε We2) which is due to
the shear-thinning behavior of PTT fluid. In fact, more than
40% decrease in the magnitude of average entropy gener-
ation rate can be achieved when ε We2 approaches 1 (for
Π = 2).

References

[1] D.M. Maron, S. Cohen, Hydrodynamics and heat/mass transfer near rotat-
ing surfaces, Adv. Heat Transfer 21 (1991) 141–183.

[2] P.R.N. Childs, C.A. Long, Review of forced convective heat transfer in sta-
tionary and rotating annuli, Proc. IMechE C: Mech. Eng. Sci. 210 (1996)
123–134.

[3] M.P. Escudier, P.J. Oliveira, F.T. Pinho, Fully developed laminar flow of
purely viscous non-Newtonian liquids through annuli including the effects
of eccentricity and inner cylinder rotation, Int. J. Heat Fluid Flow 23 (1)
(2002) 52–73.

[4] K. Khellaf, G. Lauriat, Numerical study of heat transfer in a non-
Newtonian Carreau-fluid between rotating concentric vertical cylinders,
J. Non-Newtonian Fluid Mech. 89 (2000) 45–61.

[5] M. Naimi, R. Devienne, M. Lebouché, Etude dynamique et thermique
de l’écoulement de Couette–Taylor–Poiseuille ; cas d’un fluide présentant
un seuil d’écoulement (Dynamical and thermal study of Couette–Taylor–
Poiseuille flow; case of yield pseudo-plastic fluid), Int. J. Heat Mass Trans-
fer 33 (1990) 381–391.

[6] R.M. Manglik, P. Fang, Thermal processing of viscous non-Newtonian
fluids in annular ducts: effects of power-law rheology, duct eccentricity,
and thermal boundary conditions, Int. J. Heat Mass Transfer 45 (2002)
803–814.

[7] M. Capobianchi, T.F. Irvine Jr., Predictions of pressure drop and heat
transfer in concentric annular ducts with modified power-law fluids,
Wärme Stofübertragung 27 (1992) 209–215.

[8] A. Bejan, Second-law analysis in heat transfer and thermal design, Adv.
Heat Transfer 15 (1982) 1–58.

[9] A. Bejan, A study of entropy generation in fundamental convective heat
transfer, J. Heat Transfer 101 (1979) 718–725.

[10] P.K. Nag, N. Kumar, Second law optimization of convective heat transfer
through a duct with constant heat flux, Int. J. Energy Res. 13 (1989) 537–
543.

[11] A.Z. Sahin, Second law analysis of laminar viscous flow through a duct
subjected to constant wall temperature, J. Heat Transfer 120 (1998) 76–
83.

[12] A.Z. Sahin, Effect of variable viscosity on the entropy generation and
pumping power in a laminar fluid flow through a duct subjected to con-
stant heat flux, Heat Mass Transfer 35 (1999) 499–506.

[13] B.S. Yilbas, Entropy analysis of concentric annuli with rotating outer
cylinder, Exergy Int. J. 1 (2001) 60–66.

[14] S. Mahmud, R.A. Fraser, Analysis of entropy generation inside cylindrical
annuli with relative rotation, Int. J. Thermal Sci. 42 (2003) 513–521.

[15] O.M. Haddad, M.K. Alkam, M.T. Khasawneh, Entropy generation due to
laminar forced convection in the entrance region of a concentric annulus,
Energy 29 (2004) 35–55.

[16] S. Mahmud, R.A. Fraser, Second law analysis of forced convection in a
circular duct for non-Newtonian fluids, Energy 31 (2006) 2226–2244.

[17] M. Pakdemirli, B.S. Yilbas, Entropy generation for pipe flow of a third
grade fluid with Vogel model viscosity, Int. J. Non-Linear Mech. 41 (2006)
432–437.

[18] N. Phan-Thien, R.T. Tanner, A new constitutive equation derived from
network theory, J. Non-Newtonian Fluid Mech. 2 (1977) 353–365.

[19] N. Phan-Thien, A non-linear network viscoelastic model, J. Rheology 22
(1978) 259–283.

[20] P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel
and pipe flow of Phan-Thien–Tanner fluids, J. Fluid Mech. 387 (1999)
271–280.

[21] D.O.A. Cruz, F.T. Pinho, Skewed Poiseuille–Couette flow of SPTT flu-
ids in concentric annuli and channels, J. Non-Newtonian Fluid Mech. 121
(2004) 1–14.

[22] M. Mirzazadeh, M.P. Escudier, F. Rashidi, S.H. Hashemabadi, Purely
tangential flow of a PTT-viscoelastic fluid within a concentric annulus,
J. Non-Newtonian Fluid Mech. 129 (2005) 88–97.

[23] R.I. Tanner, Engineering Rheology, Clarendon Press, Oxford, 2000.
[24] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids,

Fluid Mechanics, vol. I, second ed., Wiley, 1987.
[25] A. Bejan, Entropy Generation Minimization, CRC, Boca Raton, NY,

1996.
[26] S. Paoletti, F. Rispoli, E. Sciubba, Calculation of exergetic losses in com-

pact heat exchanger passages, ASME AES 10 (1989) 21–29.
[27] R. Keunings, M.J. Crochet, Numerical simulation of the flow of a vis-

coelastic fluid through an abrupt contraction, J. Non-Newtonian Fluid
Mech. 14 (1984) 279–299.

[28] F.T. Pinho, P.J. Oliveira, Axial annular flow of non-linear viscoelastic
fluid-an analytical solution, J. Non-Newtonian Fluid Mech. 93 (2000)
325–337.


	Entropy analysis for non-linear viscoelastic fluid  in concentric rotating cylinders
	Introduction
	Mathematical formulation
	Analytical solution
	Fluid constitutive equation
	Hydrodynamic solution
	First law analysis
	Second law analysis
	Fluid friction versus heat transfer irreversibility
	Inner wall heat flux

	Results and discussions
	Flow and thermal fields
	Local entropy generation
	Global entropy generation
	Wall cooling condition

	Conclusions
	References


